Population structure of a large blue butterfly and its specialist parasitoid in a fragmented landscape.
نویسندگان
چکیده
Habitat fragmentation may interrupt trophic interactions if herbivores and their specific parasitoids respond differently to decreasing connectivity of populations. Theoretical models predict that species at higher trophic levels are more negatively affected by isolation than lower trophic level species. By combining ecological data with genetic information from microsatellite markers we tested this hypothesis on the butterfly Maculinea nausithous and its specialist hymenopteran parasitoid Neotypus melanocephalus. We assessed the susceptibility of both species to habitat fragmentation by measuring population density, rate of parasitism, overall genetic differentiation (theta(ST)) and allelic richness in a large metapopulation. We also simulated the dynamics of genetic differentiation among local populations to asses the relative effects of migration rate, population size, and haplodiploid (parasitoid) and diploid (host) inheritance on metapopulation persistence. We show that parasitism by N. melanocephalus is less frequent at larger distances to the nearest neighbouring population of M. nausithous hosts, but that host density itself is not affected by isolation. Allelic richness was independent of isolation, but the mean genetic differentiation among local parasitoid populations increased with the distance between these populations. Overall, genetic differentiation in the parasitoid wasp was much greater than in the butterfly host and our simulations indicate that this difference is due to a combination of haplodiploidy and small local population sizes. Our results thus support the hypothesis that Neotypus parasitoid wasps are more sensitive to habitat fragmentation than their Maculinea butterfly hosts.
منابع مشابه
Colonization rates and distances of a host butterfly and two specific parasitoids in a fragmented landscape
1. We describe the pattern of colonization of suitable, but currently empty, habitat by a host butterfly and two specialist parasitoids living in a highly fragmented landscape. 2. Using survey data collected over 8 years, field sampling and small-scale experiments we show that the ability of the Glanville fritillary butterfly (Melitaea cinxia) to colonize new habitat is intermediate between tha...
متن کاملSpatial and temporal genetic structure at the fourth trophic level in a fragmented landscape.
A fragmented habitat becomes increasingly fragmented for species at higher trophic levels, such as parasitoids. To persist, these species are expected to possess life-history traits, such as high dispersal, that facilitate their ability to use resources that become scarce in fragmented landscapes. If a specialized parasitoid disperses widely to take advantage of a sparse host, then the parasito...
متن کاملStrong dispersal in a parasitoid wasp overwhelms habitat fragmentation and host population dynamics.
The population dynamics of a parasite depend on species traits, host dynamics and the environment. Those dynamics are reflected in the genetic structure of the population. Habitat fragmentation has a greater impact on parasites than on their hosts because resource distribution is increasingly fragmented for species at higher trophic levels. This could lead to either more or less genetic structu...
متن کاملTrophic interactions and population structure of the large blue Maculinea nausithous and its specialist parasitoid
متن کامل
Distribution and colonisation ability of three parasitoids and their herbivorous host in a fragmented landscape
Habitat fragmentation can disrupt communities of interacting species even if only some of the species are directly affected by fragmentation. For instance, if parasitoids disperse less well than their herbivorous hosts, habitat fragmentation may lead to higher herbivory in isolated plant patches due to the absence of the third trophic level. Community-level studies suggest that parasitoids tend...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular ecology
دوره 16 18 شماره
صفحات -
تاریخ انتشار 2007